The remaining notation is standard. Indices: ¢, countercurrent; p, forward current; o, initial value;
in, value at the entrance; out, value at the exit; e, positive end of the column; i, negative end of the column.
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FREE CONVECTION OF GAS MIXTURE ABOVE A
FLAT HORIZONTAL PLATE IN
CONSTANT-VELGCITY FLOW

A. A. Pirozhenko UDC 536.253

The problem of mixed convection for a mixture of viscous heat-conducting gases above a hori-
zontal plate is solved by using the method of integral relations.

§1. In the present article the flow of a mixture of heat-conducting gases past a flat horizontal plate
heated to a high temperature is considered under the assumption that everywhere in the flow region there
exists the derivative 8/0y > 8/6x. If one carries out the same estimates as in the boundary-layer theory, and
bearing in mind that the pressure is a resulting force, that is, it is of the order of the forces applied to the
system, the following system of equations governing the proposed flow model is obtained:

9pv, | 00Yy _ ¢, (1.1)
dox oy
v, du, oP 0 ov, (1.2)
U == ———— — ; .
Pl Ox TPy d Ox dy oy
opP 1.3
0= | pF; (1.3)
3 + oF,
oh oh _ gy or 9P (EL)“’
P oy TP T T Gy Ty Th G, - oy ]’ .4
dc dc J .
L3 U_“:___—a, a:1,2,...,N—‘1, .
PUg ax +Py 0_1/ ay]y (15)
where
N A_I N.
20a=1, =Xcaha, aha') =Cp, ECan :EP
“ aT p a a
=1 a=1 a=1 y

If in the original gas mixture the concentration of one gas is much higher than that of the other gases,
then by using the independent diffusion approximation and by bearing in mind that the term governing the effect
of the pressure diffusion is small, one obtains for the diffusion-flow vector of the a-component

kr,
T VT) , (1.6)

fa=—0D1q (vca +
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-Fzg 1. The dynamic o(¢) and the thermal A(¢) boundary layers
above a horizontal plate at different incoming flow rates; o(¢), A(¢),
m; ¢, m,

and for the heat flux vector

N
q=—%VT——}—- Ehaja' . . (1.7)
a==1
To be able to close the system of equations (1.1)-(1.7) one must add to it the equation of the thermo-
dynamic state of the gas mixture, which in the case of a mixture of thermally nondegenerate gases is given
by

N N c
P= 2 P, =pR,T 2 2 oR,T. (1.8)
M, -
a=1 a=1
The latter is now rewritten in the form of a general function:
p=pP, T, c)), a=12 ..., N—1 (1.9)

In this case one has

N/ 9
dar —_—
+ 2

) de
aca /T,P.cg p#a

o ' dp )
dp = | —— dP il

e ( ap )T,cu +(‘ O Jpey sl »
N—-1

= apdP — B, hpd® — p E Be, (Caw — Cqp) dC7,, (1.10)
o==1

where

h o b _ 1(69

o aca ) T.P,Cﬁ B#o

E=ux,1n= \ ;—m~dy,

Oo L 9V (1.11)
9t | dy ’
: g
vx: aux _}_Vy avx — g_ ___a_p_ dy + Ve ._a_..K _agf_’ (1,12)
G o o) Ox o on

N—1
N a9 9 K [ o0

_— Vy— = Vo — - er'—l
= e T e " o pr[an“La_JS:I(e )
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hy hy o om hy f__ll Se,,
(hy — hy) 5 08 N_' by — ) ) o 11 _ @ (1.13)
X e o — — Cagw — C — M .
e ;,” T o J}-=
ac, oc;, a K o Ve 0 K kra
Tx Ot +Vy on sv“’ﬁ Sc, 0  (Caw—Cuy) O Sc, h
N—1 ”
o9 &k
x| by By — hy) (Caw — g X 1.14)
[ o Z( 0w ) ] (
In the above
_Crpge . H =p———EPD1"" K= e
Pr=—y po’Le“ x PoPoo

9
A a av 2
e =t @y = ——pdy+gvy—KVw( ) )
Por P Ox dn

¥

Vy=Lou, oSl Pln o) =P 0~ | ogdy,
1Y
0

and one sets approximately P(x, 0) = const, h, = const,

To obtain a unique solution one has to add to the system of equations (1.11)~(1,14) a system of boundary
conditions which for the flow-past problems is given by

=0, v,=0; V,=0, O=%¢; c,=Caw, a=1,2, ..., N—1;
n=20 u.=Uy;
n=A;, =0
N=8,; Ca=Cq; a=12 ..., N—1~ (1.15)

§2. One seeks the solution of the system of equations (1.11)-(1.14) together with the boundary conditions
(1.15) by employing the method of integral relations. By limiting our considerations to the polynomials of

the third degree and by regarding Egs. (1,11)~(1.14) as valid up to the boundary, one obtains, with the use of
(1.15),
v

[l (1 =0 8= (1 — )% &= (1—1)%
U,
_ _ ~ (2.1)
n= 1 5 TIT = 1 5 .nq - n_ )
8 () A(E) 8

o

and to find the unknown thickness of the boundary layers 5, A, O¢ys 502, cies GCN— , one obtains the following
system of ordinary nonlinear differential equations of the first order:

5 & _ X+ X

: 2.2
pr X, (2.2)
dé
Y Y, ——
dA 1+ dg
A — ; (2.3)
dg Y;
ds
Za. +ch6_—
s ds,, ™ ody @.4)
Tl T Za '
Ve 3| Kw fri(Yr, Ye ) ]
= Y — « ;
Yi=— T[ Pr v Hir2(Veq Y1)
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where the symbol < > indicates the mean values of the quantities and
8(0), A, 8,0 &(0) ..., 8, (0)=0. (2.5)

The solution of the system of equations (2;2)—(2. 5) can be obtained numerically on an electronic computer
by employing the standard Runge—Kutta procedure, In the neighborhood of the singular point ; = 0 the known
solution [1] was adopted as a solution for the flow of a viscous incompressible gas mixture,

§3, The computations of a flow past a horizontal plate were carried out both in the case of the flow of a
single-component gas and for a multicomponent gas mixture. In the latter case one considered the flow of the
gas mixture H,—SiCl,—HCI provided that the concentration of H, was much higher than that of the two remain-
ing gases, ’

Computations of the flow of a single-component gas have shown that for small and moderate rates of the
incoming flow U, < 1.5 m/sec there occurs a critical point in the flow laminar state, the thickness of the
boundary layers (the dynamic and the thermal one) behaving in an unstable manner. The flow crisis arises
the sooner, the lower the incoming flow rate (Fig. 1). With higher incoming flow rates (U, = 5 m/sec) no
crisis in the laminar flow was observed for the plate lengths (J~1.5 m) under consideration,

To eliminate some possible errors due to the adopted numerical integration method similar variants
were also computed by employing the standard Merson procedure. The results did not show any significant
disparity.

Of course, such behavior of the boundary layers is due to the interaction of the forced and the free
convective motions. The flow region consists of three zones: a zone close to the beginning of the plate where
the forced convection dominates, a distant zone where free convection dominates, and an intermediate zone
where the forced and the free convections are comparable in strength, The investigation of stability of a
similar class of flows is a complex problem and is not considered in the present article. One should only
mention that already in [2, 3] the feasibility of the existence of such unsteady flow states was pointed out.

The computations of the flow of a multicomponent gas mixture above a horizontal plate have shown that
in the region of moderate flow rates U, > 0.5 m/sec the existence of diffusion flows exerts a stabilizing eifect
on the thickness of the boundary layers (Fig. 2a).

The carried-out investigations of the thermodiffusion effect on the boundary layers show that as a result
of the thermal diffusion being present there is a reconstruction of the boundary layers (Fig, 2b), primarily
by reducing the thickness of the thermal boundary layer which should result, in turn, in a higher heat transfer
from plate to gas.

NOTATION

X, y, orthogonal Cartesian coordinates; vx, vy, components of the velocity vector; p, gas mixture den-
sity; T, temperature; h, specific enthalpy; ¢, mass concentration; P, pressure; u, dynamic viscosity coef-
[ticient; v, kinematic viscosity coefficient; Dy o’ diffusion coefficient; kTa , thermodiffusion ratio; »#, thermal-
conductivity coefficient; Cp, specific isobaric heat capacity; g, free-fall acceleration; f, local isobar com-
pression coefficient; o, thickness of dynamic boundary layer; A, thickness of thermal boundary layer; ocgy»
thickness of concentration boundary layer for a-component; Pr, Prandtl number; Scy, Schmidt number; Legs
Lewis number, Indices:; 0, flow parameters outside boundary layer; «, flow parameters at infinity; W, pa-
rameters onthe plate surface; o, 8, parameters referring to a-, B-components,
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